How do you find the GCF of #8c^2d^3, 16c^3d#?

1 Answer
Aug 28, 2017

Answer:

See a solution process below:

Explanation:

Find the prime factors for each number as:

#8c^2d^3 = 2 xx 2 xx 2 xx c xx c xx d xx d xx d#

#36 = 2 xx 2 xx 2 xx 2 xx c xx c xx c xx d#

Now identify the common factors and determine the GCF:

#8c^2d^3 = color(red)(2) xx color(red)(2) xx color(red)(2) xx color(red)(c) xx color(red)(c) xx color(red)(d) xx d xx d#

#36 = color(red)(2) xx color(red)(2) xx color(red)(2) xx 2 xx color(red)(c) xx color(red)(c) xx c xx color(red)(d)#

Therefore:

#"GCF" = color(red)(2) xx color(red)(2) xx color(red)(2) xx color(red)(c) xx color(red)(c) xx color(red)(d) = 8c^2d#