How do you find the indefinite integral of #int (4x^-5) dx#?

1 Answer
Oct 21, 2016

#-1/x^4+C#

Explanation:

First pull out the constant using #intaf(x)dx=aintf(x)dx#:

#int(4x^-5)dx=4intx^-5dx#

Now, use the rule for integrating functions of #x# such as these: #intx^ndx=x^(n+1)/(n+1)+C#

Thus

#4intx^-5dx=4(x^(-5+1)/(-5+1))+C=4((x^-4)/(-4))+C=-1/x^4+C#