How do you find the indefinite integral of #int (x^4-6x^3+e^xsqrtx)/sqrtx dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Cesareo R. · mason m Sep 27, 2016 #2/9x^(9/2)-12/7x^(7/2)+e^x+C# Explanation: #int (x^4-6x^3+e^xsqrtx)/sqrtx dx = int (x^(7/2)-6x^(5/2)+e^x)dx# #=1/(7/2+1)x^(7/2+1)-6/(5/2+1)x^(5/2+1)+e^x+C# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 2293 views around the world You can reuse this answer Creative Commons License