How do you find the intercept and vertex of #f(x)= -4x^2 + 4x + 4#?
2 Answers
Vertex:
Explanation:
Given:
#f(x) = -4x^2+4x+4#
We can complete the square to get this into vertex form:
#f(x) = -4x^2+4x+4#
#color(white)(f(x)) = -4(x^2-x-1)#
#color(white)(f(x)) = -4(x^2-x+1/4-5/4)#
#color(white)(f(x)) = -4((x-1/2)^2-5/4)#
#color(white)(f(x)) = -4(x-1/2)^2+5#
This is in vertex form:
#f(x) = a(x-h)^2+k#
where
We can use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#f(x) = -4(x-1/2)^2+5#
#color(white)(f(x)) = -((2(x-1/2))^2-(sqrt(5))^2)#
#color(white)(f(x)) = -(2(x-1/2)-sqrt(5))(2(x-1/2)+sqrt(5))#
#color(white)(f(x)) = -(2x-1-sqrt(5))(2x-1+sqrt(5))#
Hence the zeros are:
#x = 1/2(1+-sqrt(5))#
So the
#(1/2+sqrt(5)/2, 0)" "# and#" "(1/2 - sqrt(5)/2, 0)#
The
graph{-4x^2+4x+4 [-4, 4, -3.12, 6.88]}
Vertex
Intercept
Explanation:
Given -
#f(x)=-4x^2+4x+4#
y - intercept
At x = 0;
#y=-4(0)^2+4(0)+4=0#
#y=4#
Intercept
Vertex
#x=(-b)/(2xxa)=(-4)/(2 xx(-4))=(-4)/(-8)=1/2=0.5#
At
#y=-4(0.5)^2+4(0.5)+4=-1+2+4=5#
Vertex