How do you find the intercept and vertex of #f(x)= -4x^2 + 4x + 4#?

2 Answers
Aug 7, 2017

Vertex: #(-1/2, 5)#

#y# intercept: #(0, 4)#

#x# intercepts: #(1/2+-sqrt(5)/2, 0)#

Explanation:

Given:

#f(x) = -4x^2+4x+4#

We can complete the square to get this into vertex form:

#f(x) = -4x^2+4x+4#

#color(white)(f(x)) = -4(x^2-x-1)#

#color(white)(f(x)) = -4(x^2-x+1/4-5/4)#

#color(white)(f(x)) = -4((x-1/2)^2-5/4)#

#color(white)(f(x)) = -4(x-1/2)^2+5#

This is in vertex form:

#f(x) = a(x-h)^2+k#

where #a=-4# is the multiplier (affecting the steepness and up/down orientation of the parabola) and #(h,k) = (-1/2, 5)# is the vertex.

We can use the difference of squares identity:

#a^2-b^2 = (a-b)(a+b)#

with #a=2(x-1/2)# and #b=sqrt(5)# to get it into factored form so we can find the zeros:

#f(x) = -4(x-1/2)^2+5#

#color(white)(f(x)) = -((2(x-1/2))^2-(sqrt(5))^2)#

#color(white)(f(x)) = -(2(x-1/2)-sqrt(5))(2(x-1/2)+sqrt(5))#

#color(white)(f(x)) = -(2x-1-sqrt(5))(2x-1+sqrt(5))#

Hence the zeros are:

#x = 1/2(1+-sqrt(5))#

So the #x# intercepts are:

#(1/2+sqrt(5)/2, 0)" "# and #" "(1/2 - sqrt(5)/2, 0)#

The #y# intercept is #f(0) = 0+0+4 = 4#, i.e. #(0, 4)#

graph{-4x^2+4x+4 [-4, 4, -3.12, 6.88]}

Aug 7, 2017

Vertex #(0.5, 5)#
Intercept #(0,4)#

Explanation:

Given -

#f(x)=-4x^2+4x+4#

y - intercept

At x = 0;

#y=-4(0)^2+4(0)+4=0#
#y=4#

Intercept #(0,4)#

Vertex

#x=(-b)/(2xxa)=(-4)/(2 xx(-4))=(-4)/(-8)=1/2=0.5#

At #x=0.5#

#y=-4(0.5)^2+4(0.5)+4=-1+2+4=5#

Vertex #(0.5, 5)#