How do you find the Maclaurin series for #1/(2-3x)^2#?

1 Answer
Jun 11, 2017

#1/(2-3x)^2 = sum_(k=0)^oo (3^k(k+1))/2^(k+2) x^k#

converging for #abs x < 2/3#

Explanation:

Note that:

#int dx/(2-3x)^2 = -1/3 int (2-3x)^-2 d(2-3x)#

#int dx/(2-3x)^2 = -1/3 (2-3x)^-1/(-1) +C#

#int dx/(2-3x)^2 = 1/3 1/(2-3x) +C#

So that:

#1/3 d/dx (1/(2-3x)) = 1/(2-3x)^2#

Now express:

#1/(2-3x) = 1/2 1/(1-((3x)/2)#

We know that a geometric series or ratio #abs q < 1# is convergent and:

#sum_(n=0)^oo q^n = 1/(1-q)#

so with #q=(3x)/2#

we have:

# sum_(n=0)^oo ((3x)/2)^n = 1/(1-((3x)/2))#

converging absolutely for #abs((3x)/2) < 1#, that is for #x in (-2/3,2/3)#, then:

#1/(2-3x)^2 = 1/3 d/dx (1/(2-3x)) = 1/6 d/dx(sum_(n=0)^oo ((3x)/2)^n)#

In the interval of convergence we can differentiate the series term by term:

#1/(2-3x)^2 = 1/6 sum_(n=0)^oo d/dx((3x)/2)^n#

#1/(2-3x)^2 = 1/6 sum_(n=0)^oo (3n)/2((3x)/2)^(n-1)#

The term for #n=0# is null, so:

#1/(2-3x)^2 = 1/4 sum_(n=1)^oo n((3x)/2)^(n-1)#

and changing index: #k=n-1#:

#1/(2-3x)^2 = 1/4 sum_(k=0)^oo (3^k(k+1))/2^k x^k#

Or alternatively:

#1/(2-3x)^2 = sum_(k=0)^oo (3^k(k+1))/2^(k+2) x^k#

converging for #abs x < 2/3#