How do you find the magnitude and direction angle of the vector #v=3(cos60^circi+sin60^circj)#?

1 Answer
Feb 8, 2017

#||vecv||=3; "the Direction Angle="60^@#.

Explanation:

Observe that, #vec u=(cos60^@i+sin60^@j)# is a Unit Vector,

making an angle of #60^@# with the #+ve# direction of X-Axis; &,

#vecv=3vecu.#

From this, we can immediately conclude that the magnitude of

#vecv=||vecv||=3#, and, the Direction Angle #theta=60^@#.

However, we may formally solve the Problem as follows :-

#vec v=3(cos60^@i+sin60^@j)=3{(1/2)i+(sqrt3/2)j}#

#=(3/2)i+((3sqrt3)/2)j#

#:. ||vecv||=sqrt{(3/2)^2+((3sqrt3)/2)^2}#

#=3/2sqrt(1+3)=3/2*2=3 #.

Suppose that the Direction Angle of #vecv# is #theta.#

Then, #/_(vecv, veci)=theta.#

#rArr vecv.veci=||vecv||||veci||cos theta#

Here, #vecv=(3/2,(3sqrt3)/2), veci=(1,0)#

#(3/2)(1)+((3sqrt3)/2)(0)=(3)(1)costheta#

#rArr 3/2=3costheta rArr costheta=1/2#

#rArr theta=60^@#.