How do you find the vertex and axis of symmetry for #y = 1/2x^2 + 8x - 9#?

1 Answer
Aug 5, 2015

Convert the given equation into vertex form to get the vertex at #(-8,-41)#

Explanation:

Vertex form of a quadratic:
#color(white)("XXXX")##y =m(x-a)^2+b#
#color(white)("XXXX")##color(white)("XXXX")#with vertex at #(a,b)#

Given #y= 1/2x^2+8x-9#

Extract #m#
#color(white)("XXXX")##y = (1/2)(x^2+16x) -9#

Complete the square
#color(white)("XXXX")##y = (1/2)(x^2+16x+64) -9 - (1/2)(64)#

Simplify into vertex form:
#color(white)("XXXX")##y = (1/2)(x+8)^2 -41#
#color(white)("XXXX")#or
#color(white)("XXXX")##y = (1/2)(x-(-8)) + (-41)#