How do you find the vertex and intercepts for #f(x)=-3x^2 +7x +4#?

1 Answer
Aug 9, 2018

#"vertex "=(7/6,97/12)#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#•color(white)(x)y=a(x-h)^2+k#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"to obtain this form "color(blue)"complete the square"#

#y=-3(x^2-7/3x-4/3)#

#color(white)(y)=-3(x^2+2(-7/6)x+49/36-49/36-4/3)#

#color(white)(y)=-3(x-7/6)^2-3(-49/36-4/3)#

#color(white)(y)=-3(x-7/6)^2+97/12larrcolor(blue)"in vertex form"#

#color(magenta)"vertex "=(7/6,97/12)#

#"for y-intercept let x = 0"#

#y=4larrcolor(red)"y-intercept"#

#"for x-intercepts let y = 0"#

#-3(x-7/6)^2+97/12=0#

#-3(x-7/6)^2=-97/12#

#(x-7/6)^2=97/36#

#color(blue)"take the square root of both sides"#

#x-7/6=+-97/36larrcolor(blue)"note plus or minus"#

#"add "7/6" to both sides"#

#x=7/6+-sqrt97/6larrcolor(red)"exact values"#

#x~~-0.47,x~~2.81" to 2 dec. places"#