How do you find the vertex and intercepts for #y=2x^2+3x-8#?

1 Answer
May 30, 2018

Vertex #(-3/4, -73/8)#
Y-Intercept #(0,-8)#
x-intercept #((sqrt73-3)/4,0); ((-sqrt73-3)/4,0)#

Explanation:

Given -

#y=2x^2+3x-8#

#x=(-b)/(2a)=(-3)/(2xx2)=(-3)/4=-3/4#

At #x=-3/4; y=2(-3/4)^2+3(-3/4)-8#

#y=2(-9/16)-9/4-8#

#y=18/16-9/4-8=(18-36-128)/16=-146/16=-73/8#

Vertex

#(-3/4, -73/8)#

Intercept

Y-Intercept

At #x=0; y=2(0^2)+3(0)-8=-8#

#(0,-8)#

X-intercept

At #y=0;0=2x^2+3x-8#

#2x^2+3x-8=0#

#2x^2+3x=8#

#x^2+3/2x=4#

#x^2+3/2x+9/16=4+9/16=(64+9)/16=73/16#

#(x+3/4)^2=+-sqrt(73/16)#

#x+3/4=+-sqrt(73/16)=+-sqrt73/4#

#x=sqrt73/4-3/4=(sqrt73-3)/4#

#x=-sqrt73/4-3/4=(-sqrt73-3)/4#

x-intercept #((sqrt73-3)/4,0); ((-sqrt73-3)/4,0)#