How do you find the vertex and the intercepts for #f(x)=3x^2-12x+15#?

1 Answer
Jul 6, 2016

Vertex: #(""(2,3))#
#f(x)#-intercept: #15#
#x#-intercepts: (no Real intercepts); Complex intercepts #2+-i#

Explanation:

To find the vertex convert the given equation into vertex form.

#f(x)=3x^2-12x+15#

#color(white)("XXX")f(x)=3(x^2-4x)+15#

#color(white)("XXX")f(x)=3(x^2-4x+4)+15-3xx4#

#color(white)("XXX")f(x)=color(green)(3)(x-color(red)(2))^2+color(blue)(3)#
which is the vertex form for a parabola with vertex at #(color(red)(2),color(blue)(3))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The #f(x)#-intercept is the value of #f(x)# when #x=0#
Using the original form of the equation we can see that
#color(white)("XXX")f(x)=15# when #x=0#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The #x#-intercept(s) is/are the value of #x# when #f(x)=0#.
Using the vertex form we derived
#color(white)("XXX")0=3(x-2)^2+3#

#color(white)("XXX")rarr (x-2)^2+1=0#

#color(white)("XXX")rarr (x-2)^2=-1#

Since the square of any Real number is greater than or equal to zero
we can see that this equation has no Real solutions.

However if Complex solutions are permitted
#color(white)("XXX")x-2=+-sqrt(-1)=+-i#

#color(white)("XXX")rarr x=2+-i#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For verification purposes, here is a graph of the original equation:

graph{3x^2-12x+15 [-21.36, 19.18, -0.08, 20.21]}