How do you find the vertex and the intercepts for #f(x)=x^2 - 12x -2#?

1 Answer
Nov 20, 2017

Vertex: #(6,-38)#

#x#-intercepts are:

#(6+sqrt38, 0)# and #(6-sqrt38, 0)#

#y#-intercept is:

#(0, -2)#

Explanation:

From this form of the parabola equation, i.e. #ax^2+bx+c#, the #x#-coordinate of the vertex is:

#x=(-b)/(2a)#

Here, #a=1# and #b=-12#, and #c# is #-2# therefore:

#x=(-(-12))/(2(1))=12/2=6#

Now we plug that into the equation to find #y#:

#y=6^2-12(6)-2=36-72-2=36-74=-38#

Vertex: #(6,-38)#

To find the #x#-intercepts, you have to set #y# (the equation) equal to #0# and solve for #x#

#x^2-12x-2=0#

We cannot factor this. Let's use the quadratic formula:

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-(-12)+-sqrt((-12)^2-4(1)(-2)))/(2(1)#

#x=(12+-sqrt(144+8))/2=(12+-sqrt152)/2=(12+-sqrt(2^2*38))/2=(12+-2sqrt38)/2=(2(6+-sqrt38))/2=(cancel2(6+-sqrt38))/cancel2#

#x=6+-sqrt38#

Therefore, the #x#-intercepts are:

#(6+sqrt38, 0)# and #(6-sqrt38, 0)#

To find the #y#-intercept, you have to plug in #0# for #x#:

#y=0^2-12(0)-2=-2#

Therefore, the #y#-intercept is:

#(0, -2)#