How do you find the vertex and the intercepts for #f(x)=-x^2+2x-6#?
1 Answer
Sep 4, 2017
Explanation:
#"for a parabola in standard form "f(x)=ax^2+bx+c#
#"the x-coordinate of the vertex is "#
#x_(color(red)"vertex")=-b/(2a)#
#f(x)=-x^2+2x-6" is in standard form"#
#"with "a=-1,b=2,c=-6#
#rArrx_(color(red)"vertex")=-2/(-2)=1#
#"substitute this value into the equation for y"#
#y_(color(red)"vertex")=-1^2+2-6=-5#
#rArrcolor(magenta)"vertex "=(1,-5)#
#color(blue)"Intercepts"#
#• " let x = 0, in the equation for y-intercept"#
#• " let y = 0, in the equation for x-intercepts"#
#x=0toy=-6larrcolor(red)" y-intercept"#
#y=0to-x^2+2x-6=0#
#"check the "color(blue)"discriminant"#
#Delta=b^2-4ac=4-24=-20#
#Delta<0rArr" equation has no real solutions"#
#"hence there are no x-intercepts"#
graph{-x^2+2x-6 [-16.02, 16.02, -8, 8.02]}