How do you find the vertex and the intercepts for #f(x) = -x^2 +4x +4#?

1 Answer
Aug 27, 2017

Vertex: #(2,8)#

X-intercepts: #(2(1+sqrt2),0),# #(2(1-sqrt2),0)#

Approximate intercepts: #(-0.828,0),##(4.83,0)#

Y-Intercept: #(0,4)#

Explanation:

Given:

#f(x)=-x^2+4x+4# is a quadratic equation in standard form:

#f(x)=ax^2+bx+c#,

where:

#a=-1#, #b=4#, and #c=4#.

Vertex: maximum or minimum point of a parabola

The #x# value of the vertex is the same as the axis of symmetry that divides the parabola into two equal halves.

#x=(-b)/(2a)#

#x=(-4)/(2*-1)#

#x=(-4)/(-2)# #larr# Two negatives make a positive.

#x=2#

To determine the #y# value of the vertex, substitute #y# for #f(x)#. Substitute #2# for #x# and solve for #y#.

#y=-(2)^2+4(2)+4#

Simplify.

#y=-4+8+4#

#y=8#

The vertex is #(2,8)#.

Since #a<0#, the vertex is the maximum point and the parabola opens downward.

X-Intercepts: value of #x# when #y=0#

Substitute #0# for #f(x)# and solve for #x# using the quadratic formula.

#0=-x^2+4x+4#

Quadratic formula

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Plug in the known values.

#x=(-4+-sqrt((4)^2-4*-1*4))/(2*-1)#

Simplify.

#x=(-4+-sqrt(16+16))/(-2)#

Simplify #16+16# to #32#.

#x=(-4+-sqrt32)/(-2)#

Prime factorize #32#.

#x=(-4+-sqrt((2xx2)xx(2xx2)xx2))/(-2)#

Simplify.

#x=(-4+-2xx2sqrt2)/(-2)#

#x=(-4+-4sqrt2)/(-2)#

Factor out the common #2#.

#x=(color(red)cancel(color(black)(-4))^2+-color(red)cancel(color(black)(4))^2sqrt2)/(color(red)cancel(color(black)(-2))^1#

#x=(2+-2sqrt2)#

Solutions for #x#.

#x=2+2sqrt2,##2-2sqrt2#

Simplify.

#x=2(1+sqrt2),##2(1-sqrt2)#

x-intercepts: #(2(1+sqrt2)),0),# #(2(1-sqrt2)),0)#

Approximate intercepts: #(-0.828,0),##(4.83,0)#

Y-Intercept: value of #y# when #x=0#.

Substitute #0# for #x# and solve for #y#.

#y=-(0^2)+4(0)+4#

#y=4#

y-intercept: #(0,4)#

Plot the points and sketch a parabola through the dots. Do not connect the dots.

graph{y=-x^2+4x+4 [-16.02, 16.02, -8.01, 8.01]}