How do you find the vertex and the intercepts for #f(x)=x^2-6x-6#?

1 Answer
Oct 31, 2017

vertex: #(3,-15)#
y-intercept: #(-6)#
x-intercepts: #(3+sqrt(15))# and #(3-sqrt(15))#

Explanation:

Given
#color(white)("XXX")f(x)=x^2-6x-6#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can convert this into the general vertex form #(x-color(red)a)^2+color(blue)b# with vertex at #(color(red)a,color(blue)b)#
by "completing the square" methodology:

#x^2-6x-6#
#color(white)("XXX")=x^2-6xcolor(magenta)(+3^2)-6color(magenta)(-3^2)#
#color(white)("XXX")=(x-color(red)3)^2+color(blue)((-15))#
which is the vertex form with vertex at #(color(red)3,color(blue)(-15))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The y-intercept (or equivalently the #f(x)#-intercept)
is the value of #y# (or equivalently of #f(x)#) when #x=0#
#color(white)("XXX")f(0)=0^2-6 * 0 -6= -6#
So the y (or #f(x)#) intercept is at #y(=f(x))=-6#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The x-intercepts are the values of #x# fro which #f(x)# (or equivalently, #y#) are equal to 0.
So we want the values of #x# for which
#color(white)("XXX")x^2-6x-6=0#
Since there is not obvious factoring of the left side,
we will use the quadratic formula to find the "roots" of this expression.
#color(white)("XXX")#For the general form #ax^2+bx+c=0#
#color(white)("XXX")#the quadratic formula tells us that the roots are
#color(white)("XXX")x=(-b+-sqrt(b^2-4ac))/(2a)#
In this case #a=1, b= -6, and c=-6#
so we have
#color(white)("XXX")x=(6+-sqrt((-6)^2-4 * 1 * (-6)))/(2 * 1)#

#color(white)("XXXX")=(6+-sqrt(36+24))/2#

#color(white)("XXXX")=(6+-sqrt(60))/2#

#color(white)("XXXX")=(6+-2sqrt(15))/2#

#color(white)("XXXX")=3+-sqrt(15)#

So the #x#-intercepts are at #3+sqrt(15)# and #3-sqrt(15)#

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =