How do you find the vertex of a parabola in standard form?

2 Answers
Aug 11, 2018

Refer to the explanation.

Explanation:

The standard form of a parabola is #y=ax^2++bx+c#, where #a!=0#.

The vertex is the minimum or maximum point of a parabola. If #a>0#, the vertex is the minimum point and the parabola opens upward. If #a<0#, the vertex is the maximum point and the parabola opens downward.

To find the vertex, you need to find the x- and y-coordinates.

The formula for the axis of symmetry and the x-coordinate of the vertex is:

#x=(-b)/(2a)#

To find the y-coordinate of the vertex, substitute the value for #x# into the equation and solve for #y#.

#y=a((-b)/(2a))^2+b((-b)/(2a))+c#

Example:

Find the vertex of #y=x^2+4x-9#, where: #a=1#, #b=4#, and #c=-9#.

Step 1. Find the x-coordinate of the vertex

#x=(-4)/(2*1)#

#x=-4/2#

#x=-2# #larr# x-coordinate of the vertex

Step 2. Find the y-coordinate of the vertex.

Substitute #-2# for #x# and solve for #y#.

#y=(-2)^2+4(-2)-9#

#y=4-8-9#

#y=-13# #larr# y-coordinate of the vertex

The vertex is #(-2,-13)#.

graph{y=x^2+4x-9 [-9.71, 10.29, -13.68, -3.68]}

Aug 11, 2018

See the wholesome answer, in the explanation.

Explanation:

When the axis and the perpendicular tangent at the vertex

#V ( alpha, beta )#

are parallel to the coordinate axes, the standard form is

#( y - beta )^2 = +- 4a ( x - alpha)# or

#( x - alpha )^2 = +- 4a ( y - beta )#

Graph for

#(y+3)^2 = - 4 ( x - 1 )#, and vice versa, #( x - 1 )^2 = - 4 ( y + 3)#:
graph{((y+3)^2 + 4 ( x - 1 ))(( x - 1 )^2 + 4 ( y + 3 ))((x-1)^2+(y+3)^2-0.01)=0[-5 7 -6 0]}

If ab = h^2, the general 2nd-degree equation

#ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0# represents a parabola,

and my standard form here is

#((y-beta) - m( x - alpha ) )^2 = +-4a(m ( y-beta ) +( x - alpha ) )# or

#+- 4a ((y-beta) - m( x - alpha ) ) = ( m ( y-beta ) +( x - alpha ) )^2 #

Example: #( ( y - 2 ) - 3 ( x + 2 ))^2= -2 ( 3 ( y -2 ) + ( x + 2 ))#

Vertex : #V ( alpha, beta ) = ( - 2, 2 )#

Axis: #( y - 2 ) - 3 ( x + 2 ) = 0#

Tangent at V: #3 ( y -2 ) + ( x + 2 ) = 0#

Graph, with the axis and the tangent at #V ( - 2, 2 )#:
graph{(( ( y - 2 ) - 3 ( x + 2 ))^2 + 2 ( 3 ( y -2 ) + ( x + 2 )))(( y - 2 ) - 3 ( x + 2 ))( 3 ( y -2 ) + ( x + 2 )) = 0}