How do you find the vertex of #y= -x^2+4x-3#?
1 Answer
Apr 9, 2016
(2 , 1)
Explanation:
The standard form of a quadratic function is :
#color(red)(|bar(ul(color(white)(a/a)color(black)(y=ax^2 + bx + c)color(white)(a/a)|)))# The function here : y
#= - x^2 + 4x - 3 " is in this form " # with a = -1 , b = 4 and c = -3
x-coord of vertex =
# color(blue)(|bar(ul(color(white)(a/a)color(black)((-b)/(2a)color(white)(a/a)|))) #
#rArr x_(vertex) = (-4)/(-2) = 2 # To find corresponding value of y-coord of vertex , substitute
x = 2 into the function.x = 2 : y
# = -(2)^2 + 4(2) - 3 = -4+ 8 -3 = 1#
#rArr vertex = color(orange)(|bar(ul(color(white)(a/a)color(black)( 2 , 1 )color(white)(a/a)|)))# Here is the graph of y#= -x^2+4x-3
graph{-x^2+4x-3 [-10, 10, -5, 5]}