How do you find the zeros of #g(x)=33x^2-9x-24#?

1 Answer
Jun 24, 2017

Answer:

#x=1,x=-24/33#

Explanation:

#"note that " g(1)=0rArr(x-1)" is a factor"#

#g(x)=color(red)(33x)(x-1)color(magenta)(+33x)-9x-24#

#color(white)(g(x))=color(red)(33x)(x-1)color(red)(+24)(x-1)color(magenta)(+24)-24#

#color(white)(g(x))=color(red)(33x)(x-1)color(red)(+24)(x-1)+0#

#rArrg(x)=(x-1)(color(red)(33x+24))=0#

#"equate each factor to zero"#

#x-1=0rArrx=1larr" is a zero"#

#33x+24=0rArrx=-24/33larr" is a zero"#