×

Hello! Socratic's Terms of Service and Privacy Policy have been updated, which will be automatically effective on October 6, 2018. Please contact hello@socratic.com with any questions.

How do you find zeros of #f(x)=5x^3+6x^2+x#?

1 Answer
Jul 11, 2017

Answer:

Zeros of #f(x)=5x^3+6x^2+x# are #0,-1# and #-1/5#

Explanation:

The function #f(x)=5x^3+6x^2+x# can be factorized as

#f(x)=x(5x^2+6x+1)#

#=x(5x^2+5x+x+1)#

#=x(5x(x+1)+1(x+1))#

i.e. #f(x)=x(5x+1)(x+1)#

Hence zeros of #f(x)=5x^3+6x^2+x# are #0,-1# and #-1/5#