How do you graph and label the vertex and axis of symmetry of #y=2/3(x-2)^2-5/3#?

1 Answer
Jul 20, 2017

Vertex#->(x,y)=(2,-5/3)#

Axis of symmetry #->x_("vertex")->x=2#

#y_("intercept")->(x,y)=(0,1)#

#x_("intercept")=2+-sqrt(10)/3 larr" Exact answer"#
#x_("intercept")=3.58 and 0.42# to 2 decimal places (2dp)

Explanation:

This is the vertex form of a quadratic from which, with a small adjustment, you can directly read off the vertex.

Initial form: #y=ax^2+bx+c#

Vertex form #y=a(x+b/(2a))^2+k+c#

Where #axx[b/(2a)]^2+k=0#

In this case #k+c=-5/3#

#k# is needed as changing #y=ax^2+bx+c# into this form introduces an error. So the addition of #k# acts as a correction factor.

Given:# y=2/3(x-2)^2-5/3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the vertex")#

#x_("vertex")=(-1)xxb/(2a)" "=" "(-1)xx(-2)=+2#

#y_("vertex")=k+c" "=" "=-5/3#

Vertex#->(x,y)=(2,-5/3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine y-intercept")#

Set #x=0#

#y=2/3(0-2)^2-5/3#

#y_("intercept")=8/3-5/3=1#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine x-intercept")#

Set #y=0=2/3(x-2)^2-5/3#

Add #5/3# to both sides

#5/3=2/3(x-2)^2#

Multiply both sides by #3/2#

#15/6=(x-2)^2#

Square root both sides

#+-sqrt(15/6)=x-2#

#x_("intercept")=2+-sqrt(15/6) larr" Exact answer"#

Rounding decimals is never precise so the approximate answer is:

#x_("intercept")=3.58 and 0.42# to 2 decimal places (2dp)

Tony B