How do you graph #y=2sin(2x+pi/2)+3#?

1 Answer
Mar 9, 2018

Answer:

Amplitude # = 2#

Period # = pi#

Phase shift # = -(pi/ 4)# #color(white)(aaa)(pi/4)# to the left.

Vertical shift # = 3#

Explanation:

Standard form of equation is #y = a sin(bx + c) + d#

Given = #y = 2 sin (2x + pi/2) + 3#

Amplitude # = a = 2#

Period # = (2pi) / |b| = (2pi) / 2 = pi#

Phase shift # = - c / b = -(pi/2) / 2 = -(pi/ 4)# #color(white)(aaa)(pi/4)# to the left.

Vertical shift # = d = 3#

graph{2sin(2x+(pi/2))+3 [-10, 10, -5, 5]}