Factorize the denominator:
#(1-x^3) = (1-x)(1+x+x^2)#
Write the integrand as:
#x/(1-x^3) = A/(1-x)+ (Bx+C)/(1+x+x^2)#
#x/(1-x^3) = (A(1+x+x^2)+(Bx+C)(1-x))/((1-x)(1+x+x^2))#
As the denominators are equal, so must be the numerators:
#x = A+Ax+Ax^2+Bx+C-Bx^2-Cx#
#x = (A-B)x^2 + (A+B-C)x+(A+C)#
and equating the coefficients of the same degree in #x#:
#{(A-B=0),(A+B-C=1),(A+C=0):}#
#{(A=B),(2A-C=1),(C=-A):}#
#{(A=1/3),(B=1/3),(C=-1/3):}#
Then:
#x/(1-x^3) = 1/3 1/(1-x)+ 1/3 (x-1)/(1+x+x^2)#
and:
#int (2x)/(1-x^3)dx = 2/3int dx/(1-x) +2/3int (x-1)/(1+x+x^2)dx#
Solve separately the integrals:
#2/3int dx/(1-x) = - 2/3int (d(1-x))/(1-x) = - 2/3ln abs (1-x) + C_1#
Split the other noting that #d(1+x+x^2) = 1+2x#:
#2/3int (x-1)/(1+x+x^2)dx = 1/3 int (2x+1-3)/(1+x+x^2)dx#
#2/3int (x-1)/(1+x+x^2)dx = 1/3int (2x+1)/(1+x+x^2)dx - int 1/(1+x+x^2)dx #
Now solve:
#1/3int (2x+1)/(1+x+x^2)dx = 1/3int (d(1+x+x^2))/(1+x+x^2) = 1/3ln abs (1+x+x^2) + C_2#
and finally:
#int 1/(1+x+x^2)dx = int dx/(3/4+ (x+1/2)^2)#
#int 1/(1+x+x^2)dx = 4/3 int dx/(1+ ((2x+1)/sqrt3)^2)#
#int 1/(1+x+x^2)dx = 2/sqrt3 int (d((2x+1)/sqrt3))/(1+ ((2x+1)/sqrt3)^2)#
#int 1/(1+x+x^2)dx = 2/sqrt3 arctan((2x+1)/sqrt3)+C_3#
Putting it all together:
#int (2x)/(1-x^3)dx = -2/3 ln abs (1-x) +1/3 ln abs (1+x+x^2) -2/sqrt3arctan((2x+1)/sqrt3)+C#