How do you integrate #int (x+3)dx#?

1 Answer
Jan 6, 2017

#1/2x^2+3x+c#

Explanation:

Integrate each term using the #color(blue)"power rule for integration"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(int(ax^n)dx=a/(n+1)x^(n+1))color(white)(2/2)|)))#

#rArrint(x+3)dx#

#=1/2x^2+3x+c#

where c is the constant of integration.

#color(blue)"Note "3=3x^0rArrint3x^0dx=3x#