How do you integrate int x^3/sqrt(64+x^2)x364+x2 by trigonometric substitution?

4 Answers

I = 64/3(x^2 + 64)^(3/2) - 64sqrt(x^2 + 64) + CI=643(x2+64)3264x2+64+C

Explanation:

Use the substitution x= 8tanthetax=8tanθ. Then dx= 8sec^2theta d thetadx=8sec2θdθ.

I = int (8tantheta)^3/sqrt(64 + (8tantheta)^2) * 8sec^2theta d thetaI=(8tanθ)364+(8tanθ)28sec2θdθ

I = int (512tan^3theta)/sqrt(64 + 64tan^2theta) * 8sec^2theta d thetaI=512tan3θ64+64tan2θ8sec2θdθ

I = int(512tan^3theta)/sqrt(64(1 + tan^2theta)) * 8sec^2theta d thetaI=512tan3θ64(1+tan2θ)8sec2θdθ

Now use 1 + tan^2theta = sec^2theta1+tan2θ=sec2θ.

I = int(512tan^3theta)/sqrt(64sec^2theta) * 8sec^2theta d thetaI=512tan3θ64sec2θ8sec2θdθ

I = int(512tan^3theta)/(8sectheta) * 8sec^2theta d thetaI=512tan3θ8secθ8sec2θdθ

I = int512sec thetatan^3theta d thetaI=512secθtan3θdθ

I =int512secthetatantheta(tan^2theta) d thetaI=512secθtanθ(tan2θ)dθ

We now use tan^2theta = sec^2theta -1tan2θ=sec2θ1.

I = int512secthetatantheta(sec^2theta - 1) d thetaI=512secθtanθ(sec2θ1)dθ

Now let u = secthetau=secθ. Then du = secthetatantheta d thetadu=secθtanθdθ and d theta = (du)/(secthetatantheta)dθ=dusecθtanθ.

I = int512secthetatantheta * (u^2- 1) (du)/(secthetatantheta)I=512secθtanθ(u21)dusecθtanθ

I= int(512u^2 - 512)duI=(512u2512)du

I = 512/3u^3 - 512u + CI=5123u3512u+C

I = 512/3sec^3theta - 512secthetaI=5123sec3θ512secθ

From our initial substitution, we know that tantheta = x/8tanθ=x8. Then sectheta = sqrt(x^2 + 64)/8secθ=x2+648

I = 64/3(x^2 + 64)^(3/2) - 64sqrt(x^2 + 64) + CI=643(x2+64)3264x2+64+C

Hopefully this helps!

int (x^3)/(sqrt{64+x^2}) "d"x= 1/3sqrt{64+x^2}(x^2-128) + Cx364+x2dx=1364+x2(x2128)+C.

Explanation:

I know you specified trigonometric substitution but I don't see why you'd use on in this case as a more obvious one stands out to me, because we have an x^2x2 with an x^3x3 on the numerator.

Someone's already submitted the trigonometric substitution method so thought I may as well share.

I = int (x^3)/(sqrt{64+x^2})"d"xI=x364+x2dx.

Let u=x^2u=x2, ("d"u)/("d"x) = 2xdudx=2x, "d"x = 1/(2x) "d"udx=12xdu.

Then,

I = 1/2 int x^2/(sqrt{64+x^2}) "d"uI=12x264+x2du,

= 1/2 int u(64+u)^(-1/2) "d"u=12u(64+u)12du.

At this point, I used integration by parts. Let s = us=u, and dt = (64 + u)^(-1/2)dudt=(64+u)12du. Then, for int sdt = st - int tdssdt=sttds:

I = 1/2 ( [2u(64+u)^(1/2)]-2int(64+u)^(1/2) "d"u)I=12([2u(64+u)12]2(64+u)12du)

I = u(64+u)^(1/2) - 2/3(64+u)^(3/2) + CI=u(64+u)1223(64+u)32+C

Then, I factored out 1/3 sqrt(64 + x^2)1364+x2 and substituted u = x^2u=x2 back in:

I = 1/3sqrt{64+x^2}(3x^2-2(64+x^2)) + CI=1364+x2(3x22(64+x2))+C

= color(blue)(1/3sqrt{64+x^2}(x^2-128) + C)=1364+x2(x2128)+C.

Jun 27, 2017

1/3sqrt(x^2+64)(x^2-128)+C.13x2+64(x2128)+C.

Explanation:

Here is another way to solve the Problem, without using

substitution.

I=intx^3/sqrt(x^2+64)dx,I=x3x2+64dx,

=int(x^2*x)/sqrt(x^2+64)dx,=x2xx2+64dx,

=int{((x^2+64)-64)x}/sqrt(x^2+64)dx,=((x2+64)64)xx2+64dx,

=int((x^2+64)/sqrt(x^2+64)-64/sqrt(x^2+64))xdx,=(x2+64x2+6464x2+64)xdx,

=int{(x^2+64)^(1/2)-64(x^2+64)^(-1/2)}{1/2d/dx(x^2+64)}dx,={(x2+64)1264(x2+64)12}{12ddx(x2+64)}dx,

=int(x^2+64)^(1/2){1/2d/dx(x^2+64)}dx=(x2+64)12{12ddx(x2+64)}dx
-64int(x^2+64)^(-1/2){1/2d/dx(x^2+64)}dx,64(x2+64)12{12ddx(x2+64)}dx,

=1/2int(x^2+64)^(1/2)(d/dx(x^2+64))dx=12(x2+64)12(ddx(x2+64))dx
-32int(x^2+64)^(-1/2)(d/dx(x^2+64))dx,32(x2+64)12(ddx(x2+64))dx,

=1/2(x^2+64)^(1/2+1)/(1/2+1)-32(x^2+64)^(-1/2+1)/(-1/2+1),=12(x2+64)12+112+132(x2+64)12+112+1,

=1/3(x^2+64)^(3/2)-64(x^2+64)^(1/2),=13(x2+64)3264(x2+64)12,

=1/3sqrt(x^2+64){(x^2+64)-192)},=13x2+64{(x2+64)192)},

=1/3sqrt(x^2+64)(x^2-128)+C.=13x2+64(x2128)+C.

N.B.: The Final Integrals were obtained using the Rule,

int[f(x)]^nf'(x)dx=[f(x)]^(n+1)/(n+1)+c, n ne-1.

Enjoy Maths.!

Jul 9, 2017

After using x=8sinhu and dx=8coshu transforms, this integral became,

int(8sinhu)^3*(8coshu)/(8coshu)*du

=int512(sinhu)^3*du

=int512(sinhu)^2*sinhu*du

=int512((coshu)^2-1)*sinhu*du

=int512(coshu)^2*sinhu*du-int512sinhu*du

=512/3*(coshu)^3-512coshu+C

After using sinhu=x/8 and coshu=(Sqrt(x^2+64))/8 inverse transforms, solution of this integral became,

=int(x^3)/(Sqrt(x^2+64))*dx

==1/3*(x^2+64)^(3/2)-64Sqrt(x^2+64)+C

==1/3*(x^2-128)*Sqrt(x^2+64)+C