How do you integrate #int x(x^2+3)dx#?

1 Answer
Oct 24, 2016

#intx(x^2+3)dx=1/4(x^2+3)^2+C#

Explanation:

It can be done by other methods, but if you recognise that the #x# outside the bracket results from the bracket differentiated we can integrate by inspection.

now #d/(dx)((x^2+3)^2)=2xx2x(x^2+3)=4x(x^2+3)#

Thus #intx(x^2+3)dx=1/4(x^2+3)^2+C#