How do you integrate #int_-1^1x(1+x)^3dx#? Calculus Introduction to Integration Integrals of Polynomial functions 1 Answer Douglas K. Mar 26, 2017 Do a "u" substitute Explanation: Given: #int_-1^1x(1+x)^3dx# let #u = x + 1#, then #du = dx and x = u -1# Change the limits: #a = -1 + 1# #a = 0# #b = 1 + 1# #b = 2# #int_-1^1x(1+x)^3dx = int_0^2(u-1)u^3du# #int_-1^1x(1+x)^3dx = int_0^2u^4-u^3du# #int_-1^1x(1+x)^3dx = u^5/5-u^4/4|_0^2# #int_-1^1x(1+x)^3dx = 2^5/5-2^4/4# #int_-1^1x(1+x)^3dx = 12/5# Answer link Related questions How do you evaluate the integral #intx^3+4x^2+5 dx#? How do you evaluate the integral #int(1+x)^2 dx#? How do you evaluate the integral #int8x+3 dx#? How do you evaluate the integral #intx^10-6x^5+2x^3 dx#? What is the integral of a constant? What is the antiderivative of the distance function? What is the integral of #|x|#? What is the integral of #3x#? What is the integral of #4x^3#? What is the integral of #sqrt(1-x^2)#? See all questions in Integrals of Polynomial functions Impact of this question 1498 views around the world You can reuse this answer Creative Commons License