How do you simplify #sqrt(-32)#?

2 Answers

Answer:

#\sqrt{-32}=4i\sqrt{2}#

Explanation:

#\sqrt{-32}#

#=\sqrt{32}\sqrt{-1}#

#=4\sqrt 2i\quad (\because \sqrt{-1}=i)#

#=4i\sqrt2#

Jul 25, 2018

Answer:

#4isqrt2#

Explanation:

#"using the "color(blue)"law of radicals"#

#•color(white)(x)sqrtaxxsqrtbhArrsqrt(ab)#

#"note that "sqrt(-1)=i#

#sqrt(-32)#

#=sqrt(16xx2xx-1)#

#=sqrt16xxsqrt2xxsqrt(-1)#

#=4xxsqrt2xxi#

#=4isqrt2#