How do you solve #2x^3+4+2i=0#?
1 Answer
The roots are:
#x_1 = root(3)(2+i)#
#x_2 = omega root(3)(2+i)#
#x_3 = omega^2 root(3)(2+i)#
Explanation:
Given:
#2x^3+4+2i=0#
Divide through by
#x^3+2+i = 0#
Subtract
#x^3 = 2+i#
This has roots:
#x_1 = root(3)(2+i)#
#x_2 = omega root(3)(2+i)#
#x_3 = omega^2 root(3)(2+i)#
where
If you prefer these roots in
First note that:
#abs(2+i) = sqrt(2^2+1^2) = sqrt(5)#
#Arg(2+i) = tan^(-1)(1/2)#
Hence, using de Moivre's formula:
#x_1 = root(6)(5)cos(1/3 tan^(-1) (1/2)) + i root(6)(5)sin(1/3 tan^(-1) (1/2))#
#x_2 = root(6)(5)cos(1/3 tan^(-1) (1/2)+(2pi)/3) + i root(6)(5)sin(1/3 tan^(-1) (1/2)+(2pi)/3)#
#x_3 = root(6)(5)cos(1/3 tan^(-1) (1/2)+(4pi)/3) + i root(6)(5)sin(1/3 tan^(-1) (1/2)+(4pi)/3)#