How do you solve for y #9x + 3y - 5 = 6x - 9y + 10#?
1 Answer
Explanation:
Your goal here is to isolate
This implies that you need to have all the
#9x + 3y - 5 = 6x - 9y + 10#
Start by adding
#9x + 3y - color(red)(cancel(color(black)(5))) + color(red)(cancel(color(black)(5))) = 6x - 9y + 10 + 5#
#9x + 3y = 6x - 9y + 15#
Next, add
#9x + 3y + 9y = 6x - color(red)(cancel(color(black)(9y))) + color(red)(cancel(color(black)(9y))) + 15#
#9x + 12y = 6x + 15#
Next, add
#color(red)(cancel(color(black)(9x))) - color(red)(cancel(color(black)(9x))) + 12y = 6x - 9x + 15#
#12y = -3x + 15#
Finally, divide both sides by
#(color(red)(cancel(color(black)(12)))y)/color(red)(cancel(color(black)(12))) = (-3x + 15)/12#
#y = color(green)((5-x)/4)#