How do you solve the inequality and express your answer in interval notation; #x ²-6x+7<0#?
1 Answer
Set the polynomial equal to 0 to find its factors & roots; set up a sign-table to show the sign of each factor around all roots; multiply the rows in the table to arrive at the final row, which shows the sign of the whole polynomial.
Explanation:
Since
We set the polynomial equal to 0 to find its roots:
#x^2-6x+7=0#
Using the quadratic formula, we arrive at
#x=("-"("-"6)+-sqrt(("-"6)^2-4(1)(7)))/(2(1))#
#color(white)x=(6+-sqrt(36-28))/2#
#color(white)x=(6+-sqrt(8))/2" "=3+-sqrt2#
Now, we set up a table like this one, with the factors of the polynomial on the left, and the roots of the polynomial at the top:
#[(,|,,3-sqrt2,,3+sqrt2, ),(—————,+,—,——,—,——,—),(x-(3-sqrt2),|, , , , , ),(x-(3+sqrt2),|, , , , , ),(—————,+,—,——,—,——,—),(,|, , , , , )]#
We then fill the table with
#[(,|,,3-sqrt2,,3+sqrt2, ),(—————,+,—,——,—,——,—),(x-(3-sqrt2),|,color(orange)-,color(orange)circ,color(orange)+,color(orange)+,color(orange)+),(x-(3+sqrt2),|,-,-,-,circ,+),(—————,+,—,——,—,——,—),(,|, , , , , )]#
The bottom row gets filled with the product of the rows above it. For example, in the first column, we'll get
#[(,|,,3-sqrt2,,3+sqrt2, ),(—————,+,—,——,—,——,—),(x-(3-sqrt2),|,color(orange)-,circ,+,+,+),(x-(3+sqrt2),|,color(orange)-,-,-,circ,+),(—————,+,—,——,—,——,—),(x^2-6x+7,|,color(orange)+,0,-,0,+)]#
This tells us exactly where the polynomial
This is written in interval notation as
#x in (3-sqrt2," "3+sqrt2)# .