Let's factorise the inequality
#x^2+2x-3>=0#
#(x+3)(x-1)>=0#
Let #f(x)=(x+3)(x-1)#
We build a sign chart
#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaa)##-3##color(white)(aaaaaaaaa)##1##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##x+3##color(white)(aaaaaa)##-##color(white)(aaa)##0##color(white)(aaaa)##+##color(white)(aaaaaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaaa)##-##color(white)(aaa)####color(white)(aaaaa)##-##color(white)(aaa)##0##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaa)##0##color(white)(aaaa)##-##color(white)(aaa)##0##color(white)(aa)##+#
Therefore,
#f(x)>=0# when #x in (-oo, -3] uu [1, +oo)#
graph{x^2+2x-3 [-10, 10, -5, 5]}