The inequality is
#x^3+x^2-16x-16>0#
Factorising,
#(x^2)(x+1-16(x+1))>0#
#(x^2-16)(x+1)>0#
#(x+4)(x-4)(x+1)>0#
Let #f(x)=(x+4)(x-4)(x+1)#
Build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-4##color(white)(aaaa)##-1##color(white)(aaaa)##4##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##x+4##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x+1##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-4##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)>0# when #x in (-4,-1) uu(4,+oo)#
graph{x^3+x^2-16x-16 [-19.55, 26.05, -4.47, 18.34]}