Let #f(x)=x^3+x^2+4x+4#
Before, we need to find the factors of #f(x)#
#f(-1)=-1+1-4+4=0#
Therefore, #(x+1)# is a factor
To find the other factors, we perform a long division
#color(white)(aaaa)##x^3+x^2+4x+4##color(white)(aaaa)##|##x+1#
#color(white)(aaaa)##x^3+x^2##color(white)(aaaaaaaaaaaa)##|##x^2+4#
#color(white)(aaaaa)##0+0+4x+4#
#color(white)(aaaaaaaaaaaa)##4x+4#
#color(white)(aaaaaaaaaaaaa)##0+0#
Therefore,
#f(x)=(x+1)(x^2+4)#
#AA x in RR,(x^2+4)>0 #
So, we can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+1##color(white)(aaaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)>0# when #x in ]-1, +oo[#