How do you solve #x/5 - x/2= 3 + (3x)/10#?

1 Answer
Jul 8, 2016

#x= -5#

Explanation:

To solve #x/5 - x/2 = 3 + (3x)/10#

Begin by multiplying every term by the common denominator #(10)#
to eliminate the denominators

#(10)x/5 - (10)x/2 = (10)3 + (10)(3x)/10#

#cancel(10)2x/cancel5 - cancel(10)5x/cancel2 = (10)3 + cancel(10)(3x)/cancel(10)#

#2x -5x =30+3x#

Combine like terms

#-3x =30+3x#

Use the additive inverse to combine the variables on one side

#-3x -3x =30 cancel(+3x) cancel (-3x)#

#-6x = 30#

Use the multiplicative inverse to isolate the variable

#cancel(-6)x/cancel(-6) = 30/-6#

#x= -5#