How do you tell whether the graph opens up or down, find the vertex and the axis of symmetry of #y=(x-7)(x-1)#?

1 Answer
Apr 16, 2017

Vertex#->(x,y)=(4,-9)#
Axis of symmetry #->x=4#

Explanation:

#color(blue)("General shape of the graph")#

Consider the standardised quadratic form of #y=ax^2+bx+c#

If #a# is positive the general shape of the graph is #uu#
If #a# is negative the general shape of the graph is #nn#

Lets multiply out the brackets:

#y=color(blue)((x-7))color(green)((x-1))#

Multiply everything in the right bracket by everything in the left.

#color(green)(y=color(blue)(x)(x-1)color(blue)(" "-7)(x-1)#

#y=x^2-x" "-7x+7#
#color(white)(.)#

#y=x^2-8x+7#

So for #y=ax^2+bx+c#

#a=1"; "b=-8"; "c=7#

So #a=+1# which is positive so the graph is of type: #uu#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("To determine the vertex - a sort of cheat way")#

Consider the form #y=x^2-8x+7#

Write in the form of #y=a(x^2+b/ax)+c#

Where #x_("vertex")=(-1/2)xxb/a#

#=>color(green)(x_("vertex")="axis of symmetry" = (-1/2)xx(-8)=+4)#

Substituting #x=4#

#y=x^2-8x+7" "->" "y_("vertex")=(4)^2-8(4)+7#

#y_("vertex")=16-32+7#

#color(green)(y_("vertex")=-9)#

#color(blue)("Veretex"->(x,y)=(4,-9)#

Tony B