How do you use the definition of the scalar product, find the angles between the following pairs of vectors: - 4i + 5 j- k and 3i + 4j - k?

1 Answer
Jul 14, 2018

The angle is #=74.2^@#

Explanation:

The vectors are

#vecA= <-4,5,-1>#

and

#vecB= <3,4,-1>#

The angle between #vecA# and #vecB# is given by the dot product definition.

#vecA.vecB=∥vecA∥*∥vecB∥costheta#

Where #theta# is the angle between #vecA# and #vecB#

The dot product is

#vecA.vecB=〈-4,5,-1〉.〈3,4,-1〉=-12+20+1=9#

The modulus of #vecA#= #∥〈-4,5,-1〉∥=sqrt(16+25+1)=sqrt42#

The modulus of #vecB#= #∥〈3,4,-1〉∥=sqrt(9+16+1)=sqrt26#

So,

#costheta=(vecA.vecB)/(∥vecA∥*∥vecB∥)=9/(sqrt42*sqrt26)=0.27#

#theta=arccos(0.27)=74.2^@#