How do you verify the identity #tan(x+45)=(1+tanx)/(1-tanx)#?
2 Answers
We know that
#sin(x + 45)/cos(x + 45) = (1 + sinx/cosx)/(1 - sinx/cosx)#
We use the sum formulae
#(sinxcos(45) + cosxsin(45))/(cosxcos(45) - sinxsin(45)) = ((cosx + sinx)/cosx)/((cosx - sinx)/cosx)#
#(sinx(1/sqrt(2)) + cosx(1/sqrt(2)))/(cosx(1/sqrt(2)) - sinx(1/sqrt(2))) = (cosx + sinx)/(cosx) xx (cosx)/(cosx - sinx)#
#(1/sqrt2(sinx + cosx))/(1/sqrt(2)(cosx - sinx)) = (cosx + sinx)/(cosx - sinx)#
#(sinx + cosx)/(cosx- sinx) = (cosx+ sinx)/(cosx - sinx)#
#LHS = RHS#
Identity proved!
Hopefully this helps!
Prove trig expression
Explanation:
Use the trig identity:
We get:
Trig table --> tan 45 = 1
There for: