Consider the standardised form of #y=ax^2+bx+c#
Then #x_("vertex")=(-1/2)xxb#
#=># given that vertex#->(x,y)=(3-6)# then we have
#x_("vertex")=(-1/2)xxb=3#
#=>color(magenta)(b=3xx(-2/1)=-6)#
So we now have:
#y=ax^2-6x+c#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 unknowns and 2 sets of values so solvable.
For: #(x,y)->(3,-6)#
#=> -6=a(3^2)-6(3)+c" "...Equation(1)#
For: #(x,y)->(-1,10)#
#=>10=a(-1)^2-6(-1)+c.Equation(2)#
#-6=9a-18+c" "...Equation(1)#
#color(white)(.)10=color(white)(.)a+color(white)(.)6+c" "..Equation(2)#
Multiply #Equation(2)# by 9
#color(white)(.)90=9a+54+9c" "..Equation(2_a)#
#ul(-6=9a-18+c" ".....Equation(1))larr" subtract"#
#84=0a+72+10c#
#10c=12#
#color(magenta)(c=6/5)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now that you have #c# yo can determine the value of #a# by substitution. I will let you do that.