How do you write an absolute value function whose graph is between the graphs of y=2|x| and y=3|x|? Algebra Linear Inequalities and Absolute Value Graphs of Absolute Value Equations 1 Answer Elijah T. Mar 1, 2017 Answer: #y=2.5|x|# Explanation: Thus, #y=2.5|x|# would be a solution. Really, #y = k|x|# would work where #3>k>2#. For absolute values, you can alter the "slope"(ish) by changing the constant. Thus, anything between the original values works. Related questions How do you graph absolute value equations on a coordinate plane? How do you create a table of values for an absolute value equation? How do you know which x values to choose when creating a table of values for an absolute value ... What is the shape of an absolute value graph? How do you find a vertex by looking at an absolute value equation? How do you graph the equation #y=|x+2|+3#? Which x values do you choose to create a #(x, y)# table for #y=|x+5| #? How do you graph #y=4|x|-2#? Where is the vertex for #y= |x/3-4 |#? How do you graph #f(x)=abs(x-3)+4#? See all questions in Graphs of Absolute Value Equations Impact of this question 158 views around the world You can reuse this answer Creative Commons License