How do you write #f(x) = x^2+7x+10# in vertex form?
1 Answer
Aug 6, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.
#"for a parabola in standard form "y=ax^2+bx+c#
#x_(color(red)"vertex")=-b/(2a)#
#y=x^2+7x+10" is in standard form"#
#"with "a=1,b=7,c=10#
#rArrx_(color(red)"vertex")=-7/2#
#"substitute this value into f(x) for y-coordinate"#
#y_(color(red)"vertex")=(-7/2)^2+(7xx-7/2)+10=-9/4#
#rArrcolor(magenta)"vertex "=(-7/2,-9/4)#
#rArry=(x+7/2)^2-9/4larrcolor(red)" in vertex form"#