How do you write #g(x)=2x^2+8x+13# in vertex form?
1 Answer
Aug 25, 2017
Explanation:
#"given the parabola in standard form "ax^2+bx+c#
#"the x-coordinate of the vertex is"#
#x_(color(red)"vertex")=-b/(2a)#
#2x^2+8x+13" is in standard form"#
#"with "a=2,b=8,c=13#
#rArrx_(color(red)"vertex")=-8/4=-2#
#"substitute this value into the equation for y-coordinate"#
#rArry_(color(red)"vertex")=2(-2)^2+8(-2)+13=5#
#rArrcolor(magenta)"vertex "=(-2,5)#
#"the equation of the parabola in "color(blue)"vertex form"# is.
#•color(white)(x)y=a(x-h)^2+k#
#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a constant"#
#"here "a=2" and "(h,k)=(-2,5)#
#rArrg(x)=2(x+2)^2+5larrcolor(red)" in vertex form"#