How do you write #g(x)=2x^2+8x+13# in vertex form?

1 Answer
Aug 25, 2017

#g(x)=2(x+2)^2+5#

Explanation:

#"given the parabola in standard form "ax^2+bx+c#

#"the x-coordinate of the vertex is"#

#x_(color(red)"vertex")=-b/(2a)#

#2x^2+8x+13" is in standard form"#

#"with "a=2,b=8,c=13#

#rArrx_(color(red)"vertex")=-8/4=-2#

#"substitute this value into the equation for y-coordinate"#

#rArry_(color(red)"vertex")=2(-2)^2+8(-2)+13=5#

#rArrcolor(magenta)"vertex "=(-2,5)#

#"the equation of the parabola in "color(blue)"vertex form"# is.

#•color(white)(x)y=a(x-h)^2+k#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a constant"#

#"here "a=2" and "(h,k)=(-2,5)#

#rArrg(x)=2(x+2)^2+5larrcolor(red)" in vertex form"#