How do you write the equation of the parabola in vertex form given vertex(0,3) point (-4,-45)?

1 Answer
Apr 12, 2018

#y=-3x^2+3#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"here "(h,k)=(0,3)#

#rArry=a(x-0)^2+3#

#color(white)(rArry)=ax^2+3#

#"to find a substitute "(-4,-45)" into the equation"#

#-45=16a+3rArr16a=-48rArra=-3#

#rArry=-3x^2+3#