How do you write the equation of the parabola in vertex form given vertex (–3, –4) and point (–5, 0)?

1 Answer
Feb 9, 2018

Answer:

#y=(x+3)^2-4#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#"color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a"#
#"is a multiplier"#

#"here "(h,k)=(-3,-4)#

#rArry=a(x+3)^2-4#

#"to find a substitute "(-5,0)" into the equation"#

#0=4a-4rArra=1#

#rArry=(x+3)^2-4larrcolor(red)"in vertex form"#