How do you write the equation of the parabola in vertex form given vertex (-3,4); x-intercept -1?

1 Answer
May 1, 2017

#y=-(x+3)^2+4#

Explanation:

The equation of a parabola in #color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where (h , k) are the coordinates of the vertex and a is a constant.

#"here " (h,k)=(-3,4)#

#rArry=a(x+3)^2+4#

#"x-intercept is -1 "rArr(-1,0)" is a point on the parabola"#

#"using " (-1,0)" to find a"#

#0=a(-1+3)^2+4#

#rArr4a+4=0rArra=-1#

#rArry=-(x+3)^2+4larrcolor(red)" equation in vertex form"#
graph{-(x+3)^2+4 [-10, 10, -5, 5]}