How do you write the vertex form equation of the parabola #y=x^2+6#?

1 Answer
Feb 21, 2018

#y=(x-0)^2+6=x^2+6#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#

#"where "(h,k)" are the coordinates of the vertex and a is"#
#"a multiplier"#

#y=x^2+6" is in this form"#

#"that is "y=(x-0)^2+6larrcolor(red)"in vertex form"#

#"with vertex "=(0,6)#
graph{x^2+6 [-20, 20, -10, 10]}