How do you write #y= (x-4)(x-2)# in standard form?

1 Answer
Jun 28, 2018

#y = x^2 - 6x + 8#

Explanation:

#y = (x-4)(x-2)#

The standard form of a quadratic equation is #ax^2 + bx + c#. To make this equation in standard form, we expand/simplify this using FOIL:
enter image source here

Following this image, we can multiply it out.

The #color(teal)("firsts")#:
#color(teal)(x*x) = x^2#

The #color(indigo)("outers")#:
#color(indigo)(x * -2) = -2x#

The #color(peru)"inners"#:
#color(peru)(-4 * x) = -4x#

The #color(olivedrab)"lasts"#:
#color(olivedrab)(-4 * -2) = 8#

Combine them all together to get:
#x^2 - 2x - 4x + 8#

We can still combine the like terms #color(blue)(-2x)# and #color(blue)(-4x)#:
#x^2 - 6x + 8#

As you can see, this matches the form #ax^2 + bx + c#. Therefore, the quadratic equation in standard form is #y = x^2-6x+8#.

Hope this helps!