Is it possible to factor #y=2x^2 + 8x+4#? If so, what are the factors?
2 Answers
First you can take out the factor
Explanation:
This cannot be factored any further without using radical expressions.
#2x^2+8x+4 = 2(x^2+4x+2)#
#= 2(x+2+sqrt(2))(x+2-sqrt(2))#
Explanation:
Given
#y = 2(x^2+4x+2)#
The quadratic factor is in the form
#x = (-b+-sqrt(b^2-4ac))/(2a) = (-4+-sqrt((-4)^2-(4xx1xx2)))/(2xx1)#
#=(-4+-sqrt(8))/2 = (-4+-sqrt(2^2*2))/2 = (-4+-2sqrt(2))/2 = -2+-sqrt(2)#
These zeros correspond to factors
Another way of finding this is by completing the square, then using the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#y = 2x^2+8x+4#
#=2(x^2+4x+2)#
#=2(x^2+4x+4-2)#
#=2((x+2)^2-2)#
#=2((x+2)^2-(sqrt(2))^2)#
#=2((x+2)-sqrt(2))((x+2)+sqrt(2))#
#=2(x+2-sqrt(2))(x+2+sqrt(2))#