Is it possible to factor #y=x^3+2x^2-18x+4#? If so, what are the factors?
2 Answers
Explanation:
According to Gauss, (Gauss, Carl Friedrich - 1799)
"...every non-zero, single-variable, degree
So the polynomial
so the factors are
Use Cardano's rule to find the roots giving
https://socratic.org/questions/how-do-you-find-all-the-real-and-complex-roots-of-x-3-x-2-x-2#270714
Use a trigonometric method to find:
#x^3+2x^2-18x+4 = (x-x_0)(x-x_1)(x-x_2)#
where
#x_0 ~~ 3.21370759428#
#x_1 ~~ -5.44240577684#
#x_2 ~~ 0.22869818256#
Explanation:
Given:
#f(x) = x^3+2x^2-18x+4#
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example
#Delta = 1296+23328-128-432-2592=21472 > 0#
Since
In general Cardano's method will not be very helpful to find the zeros in such a case, since the resulting algebraic solution will include cube roots of Complex numbers.
Use a trigonometric method instead:
First simplify to remove the square term:
#27f(x) = 27x^3+54x^2-486x+108#
#=(3x+2)^3-174(3x+2)+448#
Let
We want to solve:
#t^3-174t+448= 0#
Let
The multiplier
Then:
#0 = t^3-174t+448#
#=(2sqrt(58) cos theta)^3 - 174(2sqrt(58) cos theta) + 448#
#=464 sqrt(58) cos^3 theta - 348 sqrt(58) cos theta + 448#
#=116sqrt(58)(4 cos^3 theta - 3 cos theta) + 448#
#=116sqrt(58)cos 3 theta + 448#
So
So
So
So
So
So
which takes distinct values for
These are our
Then:
#x_0 ~~ 3.21370759428#
#x_1 ~~ -5.44240577684#
#x_2 ~~ 0.22869818256#