The density of mercury metal 13.6 g/cm^3. How many lbs would a 5.0 L container of mercury weigh?

Dec 6, 2015

That's a lot of mass, 68 kg, 150 odd pounds? Quite probably it exceeds your own mass.

Explanation:

There are $0.454 \cdot l b \cdot \left(k {g}^{-} 1\right)$ so $2.203 \cdot k g \cdot \left(l {b}^{-} 1\right)$, and $1 \cdot c {m}^{3} = 1 \cdot m L$

So we just do the conversion:

$5.0 \cdot \cancel{L} \times 1000 \cdot \cancel{c {m}^{3}} \cancel{{L}^{-} 1} \times 13.6 \cdot g \cdot \cancel{c {m}^{-} 3}$ $=$ ??g;

; ??cancel(g)xx10^(-3)cancel(kg)*cancel(g^-1)xx(2.203)lb*cancel(kg^-1)

$=$ ?? $l b$

Dec 6, 2015

$\text{5.0 L Hg}$ weighs $\text{150 lb Hg}$.

Explanation:

First convert liters to cubic centimeters since the density is given in $\text{g/cm"^3}$. Use $\text{5.0xx10^3 "cm"^3}$ to represent two significant figures using scientific notation.

$5.0 \cancel{\text{L"xx(1000"mL")/(1cancel"L")xx(1"cm"^3)/(1cancel"mL")=5.0xx10^3 "cm"^3 "Hg}}$

Next use the density and given volume to determine the grams of Hg.

5.0xx10^3cancel("cm"^3 "Hg")xx(13.6"g Hg")/(1cancel("cm"^3 "Hg"))="68000 g Hg"

Convert mass in grams to weight in pounds.

$\text{1 lb=453.592 g}$

$68000 \cancel{\text{g Hg"xx(1"lb Hg")/(453.592cancel"g Hg")="150 lb Hg}}$