Two corners of a triangle have angles of #pi / 12 # and # pi / 3 #. If one side of the triangle has a length of #6 #, what is the longest possible perimeter of the triangle?

1 Answer

#18+9\sqrt2+6\sqrt3+3\sqrt6#

Explanation:

Let in #\Delta ABC#, #\angle A=\pi/12#, #\angle B=\pi/3# hence

#\angle C=\pi-\angle A-\angle B#

#=\pi-\pi/12-\pi/3#

#={7\pi}/12#

For maximum perimeter of triangle , we must consider the given side of length #6# is smallest i.e. side #a=6# is opposite to the smallest angle #\angle A=\pi/12#

Now, using Sine rule in #\Delta ABC# as follows

#\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}#

#\frac{6}{\sin (\pi/12)}=\frac{b}{\sin (\pi/3)}=\frac{c}{\sin ({7\pi}/12)}#

#b=\frac{6\sin (\pi/3)}{\sin (\pi/12)}#

#b=9\sqrt2+3\sqrt6# &

#c=\frac{6\sin ({7\pi}/12)}{\sin (\pi/12)}#

#c=12+6\sqrt3#

hence, the maximum possible perimeter of the #\triangle ABC # is given as

#a+b+c#

#=6+9\sqrt2+3\sqrt6+12+6\sqrt3#

#=18+9\sqrt2+6\sqrt3+3\sqrt6#