Two corners of an isosceles triangle are at #(5 ,8 )# and #(4 ,1 )#. If the triangle's area is #36 #, what are the lengths of the triangle's sides?

1 Answer
Jun 19, 2016

side b = #sqrt(50)=5sqrt(2)~~7.07# to 2 decimal places

sides a and c =#1/10sqrt(11618) ~~10.78# to 2 decimal places

Explanation:

In geometry it is always wise to draw a diagram. It comes under good communication and gets you extra marks.

#color(brown)("As long as you label all the relevant points and include")# #color(brown)("the pertinent data you do not always need to draw the")# #color(brown)("orientation exactly as it would appear for the given points")#

Tony B

Let #(x_1,y_1)->(5,8)#
Let #(x_2,y_2)->(4,1)#

Note that it does not matter that vertex C should be on the left and vertex A on the right. It will work out. I did it this way round as it is the order you used.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Method plan")#

Step 1: Determine length of side b.
Step 2: Area known so use to determine h.
Step 3: Use Pythagoras to determine length side c and a
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Step1")#

#b=sqrt( (x_2-x_1)^2+(y_2-y_1)^2)#

#b=sqrt((4-5)^2+(1-8)^2)#

#color(green)(b=sqrt(50))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Step2")#

Area given as 36#" units"^2#

So #" "36=sqrt(50)/2xxh#

So #color(green)(h= (2xx36)/sqrt(50) = 72/(sqrt(50))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)("Step3")#

#"side c "=" side a"= sqrt( (b/2)^2+h^2)#

#c=sqrt( (sqrt(50)/2)^2 +(72/(sqrt(50)))^2)#

#c= sqrt(50/4+5184/50)#

#c=sqrt((1250+10368)/100)#

#c=sqrt(11618/100)#

#c=1/10sqrt(11618) #

#=>c~~10.78# to 2 decimal places